Fermilab

http://www.fnal.gov

HINS Beam Optics Topics

Contents: A Broad Band Chopper for the CW linac

Optics optimization for energy spread measurement

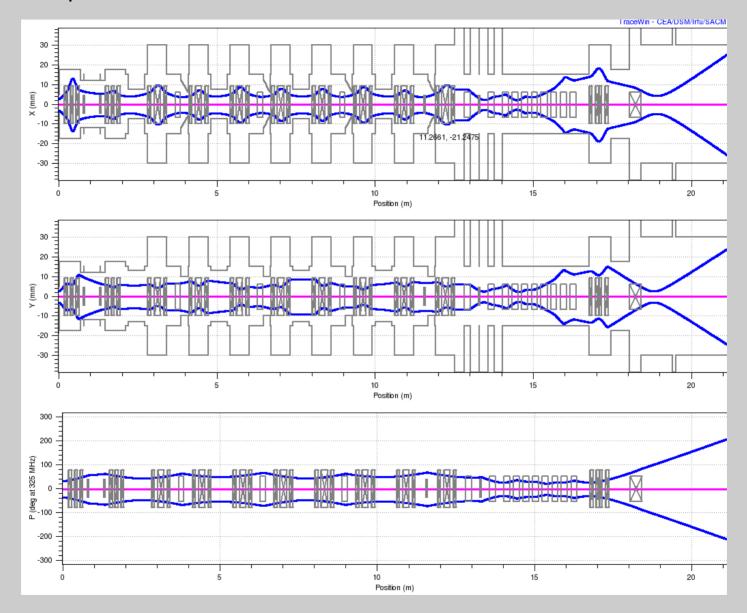
Eliana GIANFELICE

eliana@fnal.gov

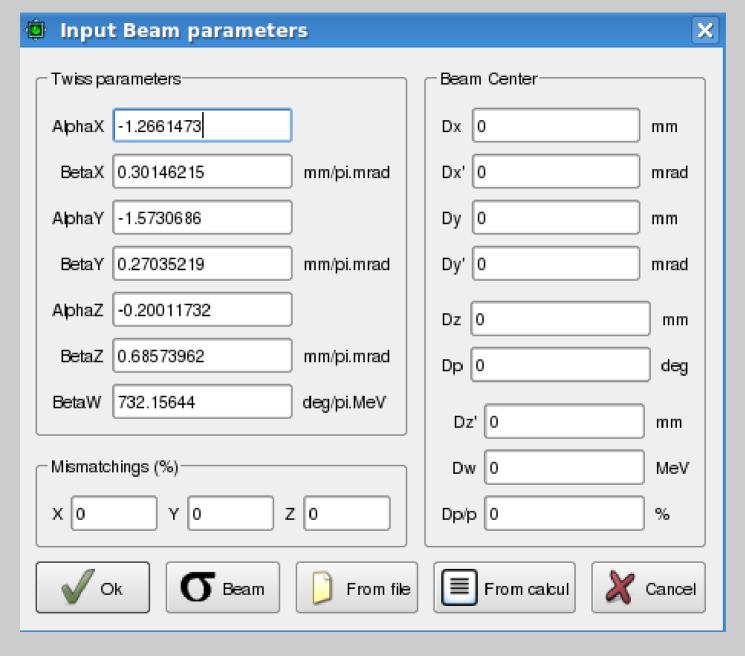
Beam line

Optics (from RFQ):

- 2 triplets and two bunchers matching RFQ to chopper
- chopper
- 2RT solenoids and one gap matching chopper to the SSR0 section
- 4 SSR0 cavities and 4 RT solenoids
- a large aperture triplet and bending magnet have been added at the end of the beam line for energy spread measurement



Beam 3σ envelopes



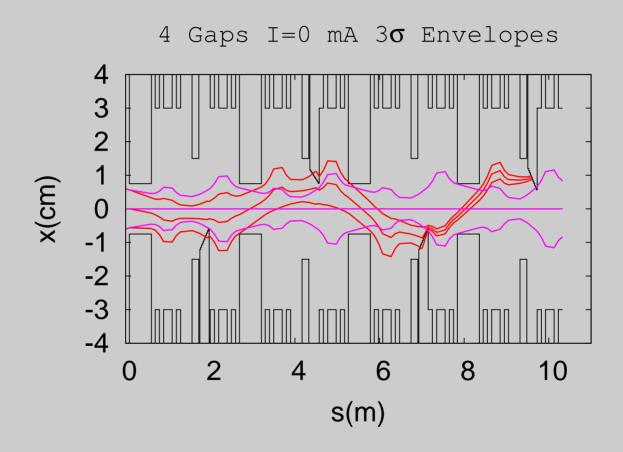
Starting conditions at RFQ exit (small spurious (?) offsets zeroed)

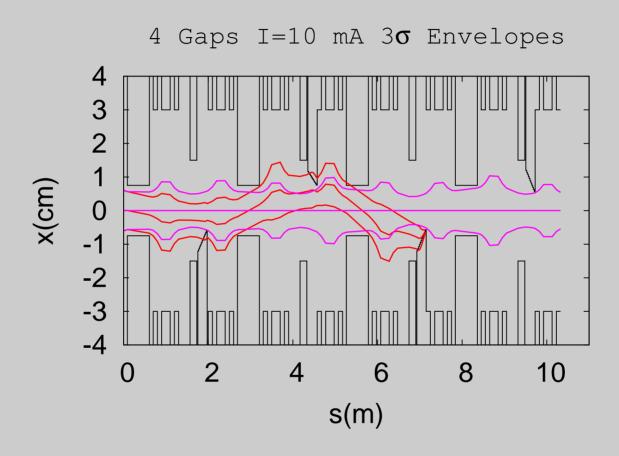
Broad Band Chopper

The chopper optics (from V. Lebedev) consists of 8 triplets interleaved by 4 kickers and 4 bunchers.

Chopper kickers:

- 4 Kickers each 0.5 m long with a 1.5 cm gap
- \bullet each provides 5 mrad kick, assuming \simeq 748 V feasible





With $\theta_1 = \theta_3 = -\theta_2 = -\theta_4 = 5$ mrad the kicked beam can be intercepted by 4 collimators.

TRACK

TRACK

Losses have been studied by N. Perunov in the "nominal" configuration and found acceptable.

Issues

- kicker strength
- effect of misalignments, not yet studied

Energy spread measurement

The beam size includes two terms

$$\sigma = \sqrt{\epsiloneta + D^2 \left(rac{\Delta p}{p}
ight)^2}$$

If a horizontal dipole is introduced downstream the beam line for creating horizontal dispersion the energy spread may be measured from the beam size.

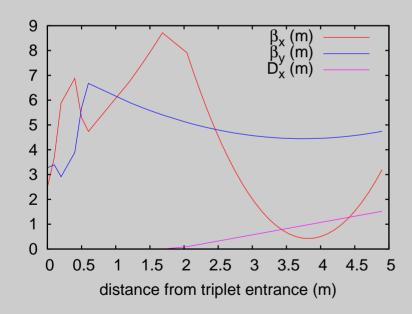
In general:

- sector magnet is more efficient than a rectangular one
- stronger the dipole, larger the dispersion

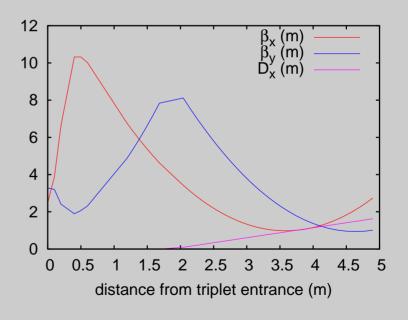
The best location for the Wire Scanner should be a location with maximum D_x^2/β_x : the optics should be designed so that β_x has a minimum no too close to the dipole allowing D_x to grow.

Problems encountered with TraceWin:

- ullet TraceWin computes the "correct" eta_x only if $\Delta p/p$ is made artificially small
- The Twiss values for a rectangular magnet are not in agreement with MAD.



In this computation the wire scanner has been located at 1.86 m from dipole exit.


The strength of the last triplet is optimized (with MAD-X) so to maximize $\sigma_{x,p}^2/\sigma_{x,\beta}^2$ keeping $\hat{\beta}_x$ and $\hat{\beta}_y$ below a given value, $\hat{\beta}$.

For instance, we fix ϕ_b =30 degrees and B=0.340 T (ρ =0.684 m, ℓ_{arc} =0.358 m) and ask for $\hat{\beta}_x$ = $\hat{\beta}_y$ < 9 m.

Sector magnet: $\sigma_{x,p}^2/\sigma_{x,\beta}^2 \simeq 8$

Rectangular magnet: $\sigma_{x,p}^2/\sigma_{x,\beta}^2 \simeq 3$

Wire Scanner is at 3.9 m

10/17

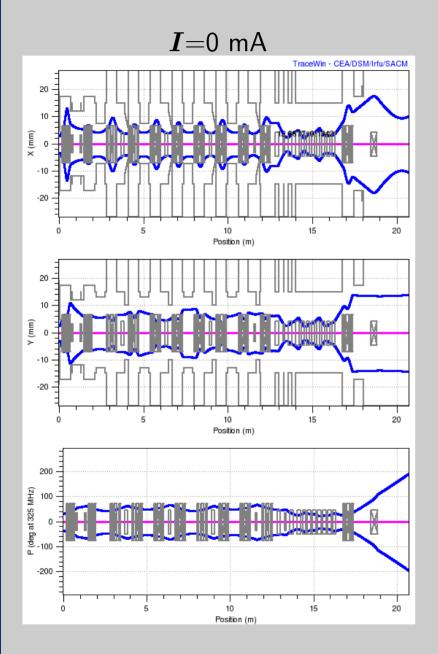
Without space charge, at the WS location is $(\Delta p/p)_{rms}=3.2 imes10^{-3}$, $eta_x=0.437$ m and $m{D_x} = 1.020$ m. Thus (with $m{eta \gamma} = 0.079$)

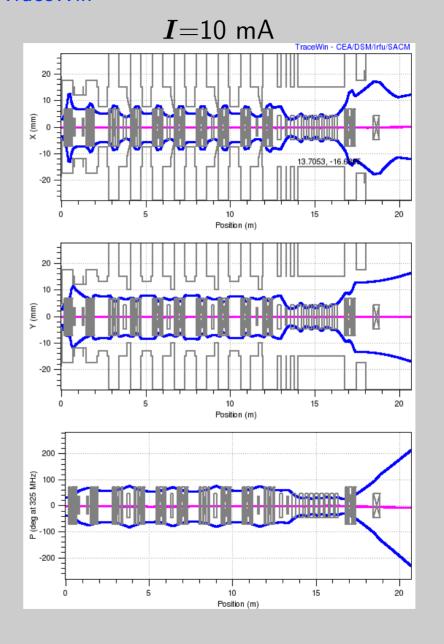
$$\sigma_{x,eta}^2 \equiv eta_x \epsilon_x = 0.437 imes rac{0.25}{0.079} imes 10^{-6} = 1.383 imes 10^{-6} \; ext{m}^2$$

$$\sigma_{x,p}^2 \equiv \left[D_x rac{\Delta p}{p}
ight]^2 = \left[1.020 imes 3.2 imes 10^{-3}
ight]^2 = 10.65 imes 10^{-6} \; ext{m}^2$$

Ignoring the $\sigma_{x,eta}$ contribution to the total beam size and computing $\Delta p/p{=}\sigma_x^{tot}/D_x$ we get 3.4×10^{-3} with an error of 6%.

We can insert a slit upstream the dipole to decrease the horizontal emittance and improve the precision.





TraceWin

Extra slides

TraceWin vs. MADX.

For instance, for ϕ_b =30 degrees rectangular bend:

	ℓ_{arc}	$oldsymbol{eta_x}$	$lpha_x$	eta_y	$lpha_y$	D_x
MADX	0.358299	1.117067	-0.342150	0.867466	0.318003	0.092
TraceWin	0.3582986	0.9534	-0.1608	0.9398	-0.2161	0.092
TraceWin(*)	0.3582986	1.2272	-0.2427	1.0578	-0.5182	0.092

(*) Reducing longitudinal emittance by a factor 1e-3.

Estonishing the disagreement in the vertical plane.

It is convenient

- strong bend to get larger dispersion
- sector magnet for focusing downstream at the Wire Scanner

Dispersion downstream dipole

$$D = D_0 + D_0' s$$

with (sector magnet)

$$D_0 =
ho(1-\cos\phi_b)$$
 and $D_0' = \sin\phi_b$

 $(D_0 \text{ and } D'_0 \text{ being the values at the exit of the dipole}).$

It is convenient therefore a large ϕ_b and a large ρ .

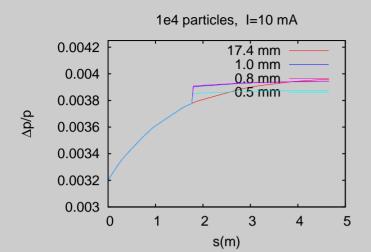
But the focusing is $M_{21} = -\sin \phi_b/\rho$: the bending radius is determined by a balance between focusing and dispersion.

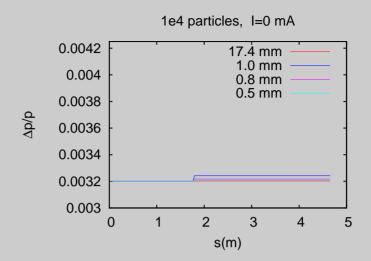
Error vs slit gap

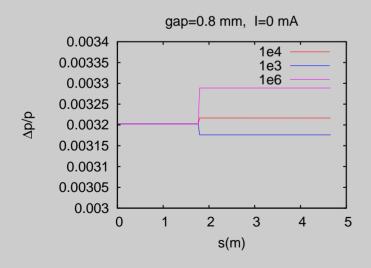
Check slit effect through tracking: 2×10^4 particles, starting conditions extracted from a 6D ellipsoid and tracked from RFQ to slit entrance with I=10 mA. The new distribution is tracked through the slit to the wire scanner position. The slit is 1 cm long.^a

I	width	losses	ϵ_x^N	σ_x	$\Delta p/p)_{rms}$	σ_x/D_x	error
(mA)	$(\mu$ m $)$	(%)	(mm mrad)	(mm)	(%)	(%)	(%)
10	17400×2	0	0.619	0.275	0.342	0.443	29
0	250×2	95	0.009	2.55	0.378	0.411	9
10	250×2	95	0.009	2.58	0.371	0.415	12
0	700×2	87	0.026	2.59	0.378	0.418	10
10	700×2	87	0.026	2.69	0.366	0.433	12

There is an *intrinsic* error which seems not strongly related to space charge.







^anb: results for a different optics!

Slit aperture changes $\Delta p/p$ (?). It happens only by tracking. Statistics?

It does not seem the case...

